"ऊर्जा" का संशोधनहरू बिचको अन्तर

सा बोट: स्वचालित पाठ परिवर्तन (-यांत्रिक +यान्त्रिक)
पङ्क्ति २१:
 
== यान्त्रिक ऊर्जा ==
उन वस्तुहरूको अपेक्षा, जसको अस्तित्वको अनुमान हामी केवल तर्कका आधारमा गर्न सक्छौं, हामीलाई ती वस्तुहरूको ज्ञान अधिक सुगमतादेखि हुन्छ जसलाई हामी स्थूल रूपले देख सक्छौं। मनुष्यका मस्तिष्कमा ऊर्जाका त्यस रूपको भावना सबैभन्दा प्रथम उदय भएको जसको सम्बन्ध ठूला ठूला पिण्डहरूदेखि छ र जसलाई यन्त्रहरूको सहायतादेखि कार्यरूपमा परिणति हुँदै हामी स्पष्टत: देख्न सक्छौं। यस यांत्रिकयान्त्रिक ऊर्जाका दुई रूप छन् : एउटा स्थितिज ऊर्जा एवं अर्को गतिज ऊर्जा। यसका विपरीत त्यस ऊर्जाको ज्ञान जसको सम्बन्ध अणुहरू तथा परमाणुहरूको गतिदेखि छ, मनुष्यलाई पछि भयो। यस कारण यो कम आश्चर्यको कुरा छैन कि न्यूटनदेखि पनि पहिला फ्रांसिस बेकनको यो धारणा थियो कि उष्मा द्रव्यका कणहरूको गतिका कारण हुन्छ।
 
=== स्थितिज ऊर्जा ===
पङ्क्ति ३७:
[[चित्र:Midsummer bonfire.jpg|right|thumb|250px|आगो, रासायनिक उर्जालाई उष्मीय उर्जामा बदल दिन्छ।]]
गति विज्ञानमा [[उर्जा संरक्षणको नियम|ऊर्जा-अविनाशिता-सिद्धांत]]का प्रमाणित भएपछि पनि यसका अर्का स्वरूपहरूको ज्ञान न हुनेका कारण यो समझिन्थ्यो कि धेरै स्थितिहरूमा ऊर्जा नष्ट पनि हुन सक्छ; जस्तै, जब कुनै पिण्डसमुदायका विभिन्न भागहरूमा अपेक्षिक गति छ भनें घर्षणका कारण स्थितिज र गतिज ऊर्जा कम हुन जान्छ। वस्तुत: यस्तो स्थितिहरूमा ऊर्जा नष्ट हुँदैन वरन् उष्मा ऊर्जामा परिवर्तन हुन जान्छ। परन्तु १८ौं शताब्दीसम्म उष्मालाई ऊर्जाको नैं एउटा स्वतन्त्र स्वरूप छैन समझिन्थ्यो। त्यस समयसम्म यो धारणा थियो कि उष्मा एउटा द्रव्य हो। १९ौं शताब्दीमा प्रयोगहरू द्वारा यो निर्विवाद रूपले सिद्ध गर्न दिइएको कि उष्मा पनि ऊर्जाको नैं एउटा अर्को रूप हो।
[[चित्र:Bockdampfmaschine.JPG|right|thumb|300px|वाष्प इंजन, उष्मीय उर्जालाई यांत्रिकयान्त्रिक उर्जामा बदल्दछ]]
हरू त प्रागैतिहासिक कालमा पनि मनुष्य दाउराहरूलाई रग्डेर अग्नि उत्पन्न गर्थ्यो, परन्तु ऊर्जा एवं उष्माका घनिष्ठ सम्बन्धतर्फ सबैभन्दा पहिला बहरूजामिन टामसन (काउंट रुमफर्ड)को ध्यान गया। यो संयुक्त राज्य (अमरीका)का मैसाचूसेट्स प्रदेशको रहनेवाला थियो। परन्तु त्यस समय यो बवेरियाका राजाको युद्धमंत्री थियो। ढली भएको पीतलको तोपको नलिहरूलाई छेद्दै समय यसले देखा कि नली धेरै कर्म हुन जान्छ भनें थियो त्यो भन्दा निकले नराम्रोदे र पनि गरम हुन्छन्। एउटा प्रयोगमा तोपको नालका चारहरूतर्फ काठको नाँदमा पानी भरकर त्यसले देखा कि खरादनाले जो उष्मा उत्पन्न हुन्छ त्यो भन्दा ढाई घण्टामा सारा पानी उबलनेका तापसम्म पुग गया। यस प्रयोगमा त्यसका वास्तविक ध्येय यो सिद्ध गर्नु थियो कि उष्मा कुनै द्रव छैन जो पिण्डहरूमा हुन्छ र दाबका कारण त्यस्तो नैं बाहिर निकल आउँछ जस्तै निचोडनाले कपडेमा देखि पानी; किनभनें यदि यस्तो होता त कुनै पिण्डमा यो द्रव एउटा सीमित मात्रामा नैं होता, परन्तु छेदने प्रयोगदेखि ज्ञात हुन्छ कि जति नैं अधिक कार्य गरियोस् उतनी नैं अधिक उष्मा उत्पन्न हुनेछ। रुमफर्डले यो प्रयोग सन् १७९८ ई.मा गरे। यसका २० वर्ष पहिला नैं लाव्वाजिए तथा लाग्राँजले यो देखेको थियो कि जानवरहरूमा भोजनदेखि उतनी नैं उष्मा उत्पन्न हुन्छ जति रासायनिक क्रिया द्वारा त्यस भोजनदेखि प्राप्त हुन सक्छ।
 
सन् १८१९ मा फ्रांसीसी वैज्ञानिक ड्यूलहरूले देखा कि कुनै ग्यासका संपीडनदेखि त्यसमा उष्मा त्यसै अनुपातमा उत्पन्न हुन्छ जति संपीडनमा कार्य गरिन्छ। सन् १८४२ ई.मा यसै भावनाको उपयोग जूलियस राबर्ट मायर ने, जो त्यस समय केवल २८ वर्षको थियो र जर्मनीका हाइलब्रन नगरमा डाक्टर थियो, यस कुराको गणनाका लागि गरे कि एउटा कलरी उष्मा उत्पन्न गर्नका लागि कति कार्य आवश्यक हुन्छ। हामी जान्दछन् कि प्रत्येक ग्यासको दुई विशिष्ट उष्माहरू हुन्छ : एउटा नियत आयतनमा तथा अर्को नियत दाब पर। पहिलो अवस्थामा ग्यास कुनै कार्य गर्दैन। अर्को अवस्थामा ग्यासलाई बाह्य दबावका विरुद्ध कार्य गर्नु पर्छ र दुइटै विशिष्ट उष्माहरूमा जो अन्तर हुन्छ त्यो यसै कार्यका समतुल्य हुन्छ। यस प्रकार मायरलाई उष्माका यांत्रिकयान्त्रिक तुल्यांकको जो मान प्राप्त भयो त्यो लगभग उति नैं थियो जति काउंट रुमफोर्डलाई प्राप्त भएको थियो।
[[चित्र:Fahrrad-detail-23.jpg|right|thumb|300px|सायकिलको डायनेमो, यांत्रिकयान्त्रिक उर्जालाई विद्युत उर्जामा बदल दिन्छ]]
यसै समय इङ्गल्याण्डमा जेम्स प्रेसकाट जूल पनि उष्माको यांत्रिकयान्त्रिक तुल्यांक निकालनमा लगा भएको थियो। यसका प्रयोग सन् १८४२ ई.देखि सन् १८५२ ई.सम्म चल्दै रहे। आफ्नो प्रयोगमा यसले एउटा ताँबेका उष्मामापीमा पानी लिया र त्यसलाई एउटा मथनीदेखि मथा। मथनीलोई दुई घिरनिहरूमादेखि लटके भए दुई भारहरूमा चलाईन्थ्यो। जस डोरदेखि यी भार लटके भए थिए त्यो यस मथनीका सिरेमा लपेटी भएको थियो र जब यी भार तलतर्फ गिरन्थे त मथनी घूमती थियो। जब यी भार तल गिरन्थे त इनकी स्थितिज ऊर्जा कम हो जाती थियो। यस कमीको केही भाग भारहरूको गतिज ऊर्जामा परिणत हुन्थ्यो र केही भाग मथनीलोई घुमानमा व्यय हुन्थ्यो। यस प्रकार यो ज्ञात गरे जा सकन्थ्यो कि मथनीलोई घुमनमा कति कार्य गरे जा रह्यो थियो। उष्मामापीका पानीका तापमा जति वृद्धि भएको त्यो भन्दा यो ज्ञात हो सकन्थ्यो कि कितनी उष्मा उत्पन्न भएको; र तब उष्माको यांत्रिकयान्त्रिक तुल्यांक ज्ञात गरे जा सकन्थ्यो। जूलले यी प्रयोग पानी तथा पारा दुइटैका साथ गरे।
 
सन् १८४७ ई.मा हरमान फान हेल्महोल्ट्सले एउटा पुस्तक लिखी जसमा उष्मा, चुंबक, बिजली, भौतिक रसायन आदि विभिन्न क्षेत्रहरूका उदाहरणहरू द्वारा उष्मा-अविनाशिता-सिद्धान्तको प्रतिपादन गरिएको थियो। जूलले प्रयोगद्वारा वैद्युत ऊर्जा तथा उष्मा-ऊर्जाको समानता सिद्ध गरे
पङ्क्ति ६२:
 
== उर्जाका स्रोत ==
आधुनिक भौतिक विज्ञानमा प्रत्येक कार्यका लागि ऊर्जालाई आवश्यक बताइएको छ। [[उर्जाका संरक्षणको सिद्धान्त|ऊर्जा संरक्षण सिद्धान्त]]का अनुसार ऊर्जालाई न त जना जा सगर्छ र ना त नषअट गरे जा सकता केवल यसको स्वरूप बदला जा सगर्छ। हामी आफ्नो दैनिक जीवनमा प्रयोग गर्न हेतु ऊर्जाका प्रयोग धेरै रूपहरूमा गर्दछन्, यथा - यांत्रिकयान्त्रिक ऊर्जा , विद्युत ऊर्जा, ऊष्मीय ऊर्जा, प्रकाश ऊर्जा, रसायनिक ऊर्जा इत्यादि। मोटरमा विद्युत ऊर्जालाई यांत्रिकयान्त्रिक ऊर्जामा बदल गर्न काम लिइन्छ त बैटरीमा रसायनिक ऊर्जालाई विद्युत ऊर्जा मा। मानव शरीर मल्य पदार्थहरूको रासायनिक ऊर्जालाई पचा गर्न त्यो भन्दा यांत्रिकयान्त्रिक कार्य गर्दछ। यसै प्रकार एउटा विद्युत बल्ब विद्युत ऊर्जालाई प्रकाय तथा ऊष्मीय ऊर्जामा बदल दिन्छ। कार वा बसको ईंजन पेट्रोलको रासायनिक ऊर्जालाई पहिला ऊष्मीय ऊर्जामा बदल्दछ तथा त्यसलाई फेरि यांत्रिकयान्त्रिक ऊर्जामा । यी सबै कार्यहरूका लागि प्रयुक्त ऊर्जा यी स्रोतहरूदेखि प्राप्त हुन्छ -
 
* [[कोइला|कोइला]]
"https://ne.wikipedia.org/wiki/ऊर्जा" बाट अनुप्रेषित