रिएमन्न हाइपोथेसिस

गणितमा रिएमन्न हाइपोथेसिस एक अनुमान हो जसमा रिएमन्न जिटा फङसन को सुन्यहरु मात्र ऋणात्मक जोडी पूर्णांक(negative even integers) र कम्प्लेक्स संख्या जसको वास्तविक संख्या 1/2 हुन्छ भनेर अनुमान गरिएको हो। यो हाइपोथेसिस बर्नहार्ड रिएमन्न द्वारा सन् १८५९ मा प्रस्ताव गरिएको थियो, तेसैले यसको नाम रिएमन्न हाइपोथेसिस भयो।

बर्नहार्ड रिएमन्न 

रिएमन्न जिटा फङसनसम्पादन

 
रिएमन्न जिटा फङसन

रिएमन्न जिटा फङसनमा कम्प्लेक्स संख्या s हुन्छ र वास्तविक भाग 1 भन्दा ठुलो हुन्छ

 

लेओन्हार्ड यूलेरले यो शृङ्खला यूलेर प्रडक को बराबर हुन्छ भनेर प्रमाणित गरेका थिए

 

यो अनन्त गुणनफल(यूलेर प्रडक), कम्प्लेक्स संख्या s जसको वास्तविक भाग 1 भन्दा अधिक हुने संख्याको लागि कन्वर्जजेन्ट हुन्छ ।

प्रमाणित गर्नु पर्नेसम्पादन

कम्प्लेक्स संख्या s को लागि -2, -4, -6, ...(ऋणात्मक जोडी पूर्णांक ) बाहेक अरु संख्याहरु, जुन संख्याहरूले   (  भनेको रिएमन्न जिटा फङसन हो) समीकरण प्रमाणित गर्छ,ती सबै संख्याहरु "क्रिटिकल लाइन" R [ s] = 1/2 (यहाँ R [s] भनेको कम्प्लेक्स संख्या s को वास्तविक भाग हो) मा पर्छन भनेर प्रमाणित गर्नु पर्ने छ।[१]

पुरस्कारसम्पादन

रिएमन्न हाइपोथेसिसलाई गणित मिलेनियम पुरस्कारकोलागि क्ले म्याथम्यतीक्स इंस्टीट्यूट[२] द्वारा सन् २००० मा छानिएको थियो र यदि कसैले पनि यो हाइपोथेसिसलाई प्रमाणित गर्छ भने त्यस खोजकर्ता(हरू)लाई पुरस्कार स्वरूप अमेरिकी १ मिलियन डलर [३] प्रदान गरिने छ।

यो पनि हेर्नुहोससम्पादन

http://www.businessinsider.com/math-problems-that-you-can-solve-to-earn-prizes-2013-7

https://primes.utm.edu/notes/rh.html

सन्दर्भ सामग्रीसम्पादन

  1. "Riemann zeta function zeros", २४ सेप्टेम्बर २०१७, अन्तिम पहुँच २४ सेप्टेम्बर २०१७ 
  2. "Millennium Problems", २२ सेप्टेम्बर २०१७, अन्तिम पहुँच २२ सेप्टेम्बर २०१७ 
  3. "Millennium Prize Problems", २३ सेप्टेम्बर २०१७, अन्तिम पहुँच २३ सेप्टेम्बर २०१७